중고등 수학

중1 수학. 대입,식의값, 다항식과 일차식

날아라쥐도리 2023. 8. 21. 09:08
반응형

대입, 식의 값, 다항식과 일차식

개념. 대입과 식의 값

1. 대입

대입이란 문자를 사용한 식에서 문자를 수로 바꾸어 넣는 것이다.

예를 들면 $x=2,~y=3$일 때 $2x-y=2\times 2 -3$이렇게 바꾸는 것이 대입이다.

 

2. 식의 값

식의 값이란 문자를 사용한 식에서 문자에 수를 대입하여 계산한 결과이다.

예를 들면 방금 대입의 예에서 계산까지 하면 식의 값이 나오는 것이다.

즉, $x=2,~y=3$일 때 $2x-y=2\times 2 -3=1$이다.

 

3. 참고

(1) 문자에 어떤 수를 대입할 때에는 생략된 곱셈 기호인 $\times$를 다시 써주는 것이 좋다.

(2) 문자에 음수를 대입할 때에는 반드시 괄호를 사용하여 나타내자.

(3) 분모에 분수를 대입할 떄에는 생략된 나눗셈 기호인 $\div$를 다시 나타낸 후, 곱셈으로 고치는 것이 좋다.

 

개념. 다항식과 일차식

1. 항: 수 또는 문자의 곱으로 이루어진 식이다.

예를 들어 $2x-y+1$에서 항은 $2x,~-y,~1$이렇게 세 개다.

그리고 항이 $3$개 이므로 위의 식은 다항식이라 부른다.

참고로 항이 $1$개인 경우에도 다항식이지만, 특별히 단항식이라 부른다.

 

2. 상수항 : 수로만 이루어진 항

예를 들어 $2x-y+1$에서 상수항은 $1$이다.

 

3. 계수 : 수와 문자의 곱으로 이루어진 항에서 문자에 곱해진 수이다.

예를들어 $2x-y+1$에서 $x$의 계수는 $2$이고, $y$의 계수는 $-1$이다.

 

4. 다항식 : 한 개 이상의 항의 합으로 이루어진 식이다.

예를들어 $x$, $2a+4b$, $3p+2q+r$등은 다항식이다.

 

5. 단항식 : 다항식 중에서 한 개의 항으로만 이루어진 다항식을 단항식이라 부른다.

$x$, $2a+4b$, $3p+2q+r$에서 $x$는 단항식이다.

 

6. 차수 : 항에서 문자가 곱해진 개수

예를 들어 $x^{3}+2x+1$에서 $x^{3}$은 $x$가 세 번 곱해졌기 때문에 $3$차이고, $2x$에서는 $x$가 한번 곱해졌기 때문에 일차이다..

 

7. 다항식의 차수 : 다항식을 이루는 각 항의 차수 중에서 가장 큰 값

예를 들어 $x^{3}+2x+1$에서 $x^{3}$은 $x$가 세번 곱해졌기 때문에 $3$차이고, $2x$에서는 $x$가 한번 곱해졌기 떄문에 일차이다..그중에 차수가 가장 큰 값은 $3$이므로 $x^{3}+2x+1$은 $3$차식이 된다는 것이다.

 

8. 일차식 : 차수가 $1$인 다항식

예를들어 문자가 하나씩 곱해식 식이 일차식인데 실제로 써보면 $a+1,~3x-8,~2p+9q$등이 있다.

 

참고

1. 다항식에서의 항의 계수를 말할 때에는 숫자 앞의 부호까지 말해야 한다.

예를들어 $3x-2y$에서 $y$의 계수는 $-2$인 것이다.

 

2. $x=1\times x$이므로 $x$의 계수는 $1$이고, $-x=\left(-1\right)\times x $이므로, $x$의 계수는 $-1$이다.

 

 

반응형